THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5510 Foundation of Advanced Mathematics 2017-2018 Suggested Solution to Quiz 1

1. Let P, Q and R be three statements. By constructing truth tables, show that

(a)
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

(b) $P \to Q \equiv (\neg Q) \to (\neg P)$.

Ans:

(a)

P	Q	R	$Q \wedge R$	$P \lor (Q \land R)$	$P \lor Q$	$P \vee R$	$(P \lor Q) \land (P \lor R)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	\mathbf{F}	Т	Т	Т	Т
Т	F	Т	\mathbf{F}	Т	Т	Т	Т
Т	F	F	\mathbf{F}	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
F	F	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}
F	F	F	F	F	F	F	F

From the fifth column and the last column, we have $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$.

(b)

P	Q	$P \rightarrow Q$	$\neg Q$	$\neg P$	$(\neg Q) \rightarrow (\neg P)$
Т	Т	Т	F	F	Т
Т	F	F	Т	F	F
\mathbf{F}	Т	Т	F	Т	Т
\mathbf{F}	F	Т	Т	Т	Т

From the third column and the last column, we have $P \to Q \equiv (\neg Q) \to (\neg P)$.

- 2. Let $A \subset \mathbb{R}$ and let $f : A \to \mathbb{R}$ be a function.
 - (a) f is said to be a positive function if
 - for all $x \in A$, f(x) > 0.
 - (b) f is said to be bounded above if
 - there exists $M \in \mathbb{R}$ such that for all $x \in A$, $f(x) \leq M$.
 - (c) $\lim_{x \to +\infty} f(x) = +\infty$ if
 - for all M > 0, there exists $N \in \mathbb{R}$ such that for all $x \ge N$, $f(x) \ge M$.

Write down the **negation** of the above definitions.

Ans:

- (a) f is not a positive function if there exists $x \in A$ such that $f(x) \le 0$. $(\exists x \in A)(f(x) \le 0)$
- (b) f is not bounded above if for all $M \in \mathbb{R}$, there exists $x \in A$ such that f(x) > M. $(\forall M \in \mathbb{R})(\exists x \in A)(f(x) > M)$
- (c) $\lim_{x \to +\infty} f(x) \neq +\infty$ if there exists M > 0 such that for all $N \in \mathbb{R}$ there exists $x \ge N$ such that f(x) < M. $(\exists M > 0)(\forall N \in \mathbb{R})(\exists x \ge N)(f(x) < M)$

3. Prove that the sum of a rational number and an irrational number is an irrational number.

Ans:

Suppose the contrary, i.e. there exists a rational number x and an irrational number y such that the sum z is a rational number.

We let
$$x = \frac{m}{n}$$
 and $z = \frac{p}{q}$ where m, n, p, q are integers and $n, q \neq 0$. Then,

$$x + y = z$$

$$\frac{m}{n} + y = \frac{p}{q}$$

$$y = \frac{p}{q} - \frac{m}{n}$$

$$= \frac{np - mq}{qn}$$

Since m, n, p, q are integers, np - mq and qn are integers. It means y is a rational number, which is a contradiction.

Therefore, the sum of a rational number and an irrational number is an irrational number.

- 4. Define a relation \sim on \mathbb{Z} such that $a \sim b$ if and only if b a is divisible by 7.
 - (a) Show that \sim defines an equivalence relation.
 - (b) Show that the addition + on \mathbb{Z} induces an addition \boxplus on $\mathbb{Z}_7 = \mathbb{Z}/\sim$.
 - (c) Show that the addition \boxplus on \mathbb{Z}_7 is associative.
 - (d) Evaluate [9] \boxplus [11], where [9], [11] $\in \mathbb{Z}_7$.

Ans:

- (a) i. (Reflexive) Let $a \in \mathbb{Z}$. Then, a a = 0 which is divisible by 7 and so $a \sim a$.
 - ii. (Symmetric) Let a, b ∈ Z such that a ~ b.
 Then b a is divisible by 7, i.e. b a = 7M for some integer M.
 We have a b = -7M = 7(-M), where -M is an integer. Therefore, a b is divisible by 7 and so b ~ a.
 - iii. (Transitive) Let $a, b, c \in \mathbb{Z}$ such that $a \sim b$ and $b \sim c$. Then b - a and c - b are divisible by 7, i.e. b - a = 7M and c - b = 7N for some integers M, N. We have c - a = (c - b) + (b - a) = 7(M + N), where M + N is an integer. Therefore, c - a is divisible by 7 and so $c \sim a$.

Therefore, \sim is an equivalence relation on \mathbb{Z} .

(b) Let $a, b, a', b' \in \mathbb{Z}$ such that $a \sim a'$ and $b \sim b'$.

Then a' - a and b' - b are divisible by 7, a' - a = 7M and b' - b = 7N for some integers M, N. We have (a' + b') - (a + b) = (a' - a) + (b' - b) = 7(M + N), where M + N is an integer. Therefore, (a' + b') - (a + b) is divisible by 7 and so $(a + b) \sim (a' + b')$.

Therefore, the addition + on \mathbb{Z} induces an addition \boxplus on $\mathbb{Z}_7 = \mathbb{Z}/\sim$.

(c) Let $[a], [b], [c] \in \mathbb{Z}_7$, where $a, b, c \in \mathbb{Z}$. Then,

$$([a] \boxplus [b]) \boxplus [c] = [a+b] \boxplus [c]$$

= $[(a+b)+c]$
= $[a+(b+c)]$ (associative law of + on \mathbb{Z})
= $[a] \boxplus [b+c]$
= $[a] \boxplus ([b] \boxplus [c])$

Therefore, the addition \boxplus on \mathbb{Z}_7 is associative.

(d) $[9] \boxplus [11] = [9+11] = [20] = [6]$ (Alternative method: $[9] \boxplus [11] = [2] \boxplus [4] = [2+4] = [6]$)